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A noncompartmental approach for determination of the apparent zero-order absorption rate constant
(ko) has been developed. The procedure evolves from the convolution integral and requires individual
oral-dose plasma concentration values and calculation of area intervals under the plasma concentra-
tion—time curves after intravenous administration. The proposed method was evaluated and compared
with the Wagner-Nelson, Loo-Riegelman, deconvolution, nonlinear regression, and moment methods
using errorless and errant simulation data for one- or two-compartment models. The area function
method is generally equal to the best of these techniques (nonlinear regression) and superior to the
weaker methods (moment, deconvolution, Loo-Riegelman), especially for errant two-compartment
data. Coupled with a companion procedure for constructing fraction absorbed versus time plots and
assessing first-order absorption rate constants, the area function methods offer direct and accurate
means of discerning drug absorption kinetics without the need for assignment of a disposition model
for drugs with linear elimination kinetics.

KEY WORDS: apparent zero-order absorption rate constant; deconvolution; Wagner-Nelson

method; Loo-Riegelman method; moment analysis; nonlinear regression.

INTRODUCTION

The development of controlled-release dosage formula-
tions has been receiving increasing attention in the pharma-
ceutical industry. Zero-order release and absorption of drugs
is a frequent goal (1). In the evaluation of these products, it
is important to characterize drug absorption and calculate
the absorption rate constant. Several methods for estimating
either first- or zero-order absorption rate constants have
been reported. These include the Wagner~Nelson method
(2), the Loo-Riegelman method (3), deconvolution (4), non-
linear regression analysis using NONLIN (5), and moment
analysis (6).

In 1966, Rescigno and Segre (7) introduced deconvolu-
tion to determine the transfer function between two com-
partments. Later, the application of deconvolution to the
evaluation of drug absorption was reported by Benet and
Chiang (4). They recommended the use of the point-areca
method of deconvolution, in particular, to estimate the an-
titransform of the transfer function [G(z,)] describing the ab-
sorption process (4). The values of this function obtained by
deconvolution at various times is an approximation of the
true values for a first-order process. In contrast, for a zero-
order absorption process, an exact solution for G(z,) is ob-
tained according to (4)
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where C,(¢,) is the concentration at time, ¢,, after the oral
administration of drug, AUC{, % is the area interval under
the intravenous blood concentration-time curve between
t;_, and 1, k, is the apparent zero-order absorption rate
constant, and D is the dose. Although the basis of the point-
area deconvolution method which utilizes Eqgs. (1)-(3) has
been mathematically verified (8), Egs. (1)-(4) have not been
derived for a zero-order absorption process.

Recently, an area function method was developed to
calculate the apparent first-order absorption rate constant
(9). A similar derivation technique may be applied to esti-
mate the apparent zero-order absorption rate constant. The
purposes of this paper are (a) to present a new method to
estimate k, and the fraction of the amount absorbed [F,(¢)]
based on the relationship between oral plasma concentra-
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tions and area intervals obtained from plasma concentra-
tion—time curves after intravenous administration of drug;
(b) to evaluate and compare this proposed method and the
Wagner—Nelson method, the Loo-Riegelman method, de-
convolution, nonlinear regression analysis, and moment
analysis using errorless and errant data sets; and (c) to derive
Eq. (4) and to discuss the relationship between the proposed
method and deconvolution.

THEORETICAL

The following equation has been derived previously (9)
for a linear mammillary system:
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where G(s) is the transfer function between the absorption
site and the central compartment and Ing is the Laplace
transform of the input function (7).

For an intravenous bolus,

Iny =D ©)
For zero-order input from the GI tract,
I = kys ™

Therefore, substituting both Eq. (6) and Eq. (7) into Eq.
(5) yields
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Rearrangement of terms gives
ko
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Taking the anti-Laplace transform of both sides of Eq. (9)
yields

ko
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or
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where AUCEF (r) denotes the area function,
AUCF() = AUC™ (14
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Therefore, k, can be obtained from the ratio given in Eq. (13)
at any time in the absorption phase. This derivation provides
the theoretical basis for the point/area method of deconvo-
lution for zero-order input functions (see Appendix).

Assuming that the bolus dose and oral dose are the same
and equal to D, the fraction of the amount absorbed at time
t [F,()] can be calculated according to the following equa-
tion:

t -

&
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where 1 is the duration of the input process. The fraction (F)
of the dose absorbed is generated from

F = AUC,J/AUC, (16)
Substituting Eq. (13) into Eq. (15b) yields
- Cpol®)
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Thus, Eq. (17) can be used to estimate the fraction of the
amount absorbed at any time in the absorption phase.

Differentiating both sides of Egs. (15a) and (15b) with
respect to time ¢ yields

dF,(t) 1 ko
d 1 F-D (182, b)
Substituting Eq. (13) into Eq. (18b) yields
dFy()  Cpol?)
dt _ F-AUCF() 19
Substituting Eq. (A2) into Eq. (19) yields
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% =F (20)
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It can also be shown that Eq. (21) is valid for a first-order
absorption process. Thus, antitransform of the transfer func-
tion describing the zero- or first-order absorption process
equals the product of bioavailability and the fractional ab-
sorption rate.

Similarly, for a first-order absorption process, F,(f) can
be calculated according to the following equation:

F() =1- et (22)
with k, generated from the following equation (9):
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Differentiating both sides of Eq. (22) with respect to time ¢
yields

dFy(0) _

. p—kat
ar k,-e

@4



Assessing Zero-Order Absorption Rate Constant

METHODS

Drug concentration versus time data corresponding to
intravenous and oral administration of a hypothetical drug
[based on the properties of theophylline (Ref. 10)] following
a one-compartment model (Fig. 1) were simulated by assign-
ing V, = 20 liters, k,, = 0.10 hr ™', 7 = 10.0 hr, F = 1, and
D = 300 mg to the following equations:

Ci(r) = % < ekt 25
and
Coold) = %pk—d (1-e*?) whent<t (26)
or
Cpot) = Vl_F;D—el [e7*t=?) — g~ket]  whent >«
4]

where 7 is the period of time over which the zero-order ab-
sorption occurs and equals D/k,. Sampling times of 0, 1, 2, 4,
6, 8, 10, 12, 16, 20, 24, 28, and 32 hr were used for simula-
tion. Ten additional data sets were generated by adding nor-
mally distributed random error with a relative standard de-
viation (RSD) of +10% to each concentration value.
Similary, for a hypothetical drug [based on the proper-
ties of sulfisoxazole (11)] obeying a two-compartment model
(Fig. 1), one set of errorless and 10 sets of errant data at
times 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 12, 24, and 48 hr
were generated by the following equations with D = 2004

mg, F = 1,7 = 3.0hr, V, = 7.72 liters, k;, = 0.45 hr ™, kj,
= 0.87 hr™', and ko = 0.20 hr ™ %:
_ DM k) L, DMa—k)
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28
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whent > 7 30)

where k,, is the return rate constant from the peripheral
compartment, and A, and A, are the macroconstants describ-
ing drug disposition slopes with A, > A,. Values of k, were
then calculated from these data sets by using the proposed
method, nonlinear regression analysis based on the simulta-
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Fig. 1. (a) One-compartment model for drug concentration (C), vol-
ume of distribution (V,), and rate constants for absorption (k,) and
elimination (k). (b) Two-compartment model depicting drug con-
centrations in the central (C) and tissue compartments (Cy), vol-
umes of distribution (V;, V), the rate constant for absorption (k,),
and distribution and elimination constants (k,,, k,;, k10).

neous fit of intravenous data and oral data to appropriate
equations using NONLIN&84 (12), moment analysis, decon-
volution, the Wagner-Nelson method, and the Loo-
Riegelman method. In addition, values of F,(¢) were also
calculated by the proposed method, by the Wagner-Nelson
method, and by the Loo-Riegelman method. It should be
noted that in this work the Wagner—-Nelson method was ap-
plied only to the data showing one-compartment model char-
acteristics, while the Loo-Riegelman method was used only
for the data generated from the two-compartment model.

To illustrate the relationship between the proposed
method and deconvolution, individual &k, values were ob-
tained by deconvolution using Egs. (1)-(4) at # < ¢, and the
results were expressed as the mean + the standard deviation
(SD) of several individual &, values.

The absorption rate profiles were compared as follows:
one set of the errant data for the one-compartment model
(Fig. 1) was used to calculate AF, (¢)/At values as a function
of time. The theoretical values were also obtained. Similarly,
the same procedure was applied to one errant data set ex-
hibiting two-compartment model characteristics and first-
order absorption kinetics (9) (k, = 0.4 hr ). In both cases,
AF,(#)/At versus time profiles were constructed.

RESULTS

The data obtained following zero-order input for two
hypothetical drugs were used to estimate the zero-order ab-
sorption rate constants. As shown in Table I, when applied
to both errorless and errant data, which showed one-
compartment model characteristics, all five methods gener-
ally performed satisfactorily, with very little deviation from
the theoretical value (0 to 1.3%). Application of both the
proposed method and deconvolution to errorless data
yielded the same, exact k, values. However, when applied to
errant data, a more accurate estimate of k, was obtained by
the area function method (Table I).

In addition, F,(#) values at various times were estimated
from the same data sets by the proposed method and the
Wagner-Nelson method. The results are listed in Table II.
When applied to errorless as well as errant data, both meth-
ods gave estimates of F,(f) which were either identical or
very close to the theoretical values. This is illustrated by the
plot of F,(¢) versus time shown in Fig. 2. According to Eq.
(15b), a plot of F,(¢) versus time yields a straight line with
slope of 1/7 and an intercept of zero. Indeed, this type of plot
can be constructed to identify the kinetic nature of the ab-
sorption process.
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Table I. Calculation of the Absorption Rate Constant for a One-Compartment Model by Five Methods for Errorless and Errant Data

Input value Calculated k, (mg/hr)
kg k, This Nonlinear Moment
thr™h (mg/hr) Data method regression method Deconvolution Wagner—Nelson
0.1 30.0 Errorless 30.0 = 0° 30.0 29.9 30.0 = 0* 30.2
0y 0.3) (U] ©0.7)
0.1 30.0 Errant 30.0 + 1.14 30.1 = 1.0 30.1 £ 2.7 29.8 = 3.5 29.6 2.0
©) 0.3) 0.4) 0.7) (1.3)

“ Mean * SD; data points from time zero to 7.,,, were used in Eq. (12) to calculate k.
® Mean + SD; data points from time zero to f,,,, were used to calculate k,.
€ Number in parentheses is the percentage deviation from the theoretical value.

4Mean = SD; N = 10.

These methods, except for the Wagner-Nelson method,
were also evaluated using data simulated for a hypothetical
drug exhibiting two-compartment model characteristics. As
indicated in Table III, all procedures were generally ade-
quate, as values of &, are within 11% of the true value. Both
the area function method and nonlinear regression analysis
were less sensitive to fluctuations in data than deconvolution
and moment analysis. For errorless data, both the proposed
method and deconvolution gave identical results. In con-
trast, they yielded different &, values when applied to errant
data, with 8.5% error in the deconvolution method versus
1.1% error in the area function method (Table III). When the
Loo-Riegelman method was applied to the same sets of data,
it gave the largest percentage error (10.8% with errant data)
in estimating k.

Inaccurate estimation of the apparent first-order absorp-
tion rate constant (k,) by the Loo—Riegelman method has
been reported (13,14). Here we demonstrated that this
method performed most poorly in estimating k. This is due
mainly to inaccurate estimates of the k,,, k,,, and AUC val-
ues which are needed in the k, calculation. It has been
shown that estimates of &, by this method could be improved
by assessing concentrations more frequently in the absorp-
tion phase (14). However, estimates of £, by any method can

usually be improved by sampling more frequently during the
absorption phase.

Values of F,(f) obtained by the area function and Loo-
Riegelman methods using the same data sets are listed in
Table IV. Again, the proposed method gave reasonably good
results, whereas the Loo—Riegelman method performed
more poorly. This is also illustrated in Fig. 3, showing the
linear relationship between F(f) and time with a slope of 1/7
and an intercept of zero.

Since a zero-order absorption process ceases at f.,,.,
the k, and F(r) values obtained after ,,,,, are not meaning-
ful. To apply this method successfully to estimate k, and
F (), we suggest using only those data obtained in the ab-
sorption phase (f < f,,,). The same applies to deconvolu-
tion, the Wagner-Nelson method, and the Loo-Riegelman
method. We also recommend that the results obtained by the
proposed method be expressed as the mean + SD of several
individual k, values.

As shown in Figs. 4 and 5, the theoretical absorption
rate is constant for zero-order input but follows an exponen-
tial decay for first-order input. The absorption rate profiles
obtained by the proposed method using errant data are dis-
played as a set of rectangular pulses. These pulses were
generated assuming constant absorption in each sampling

Table II. Calculation of the Fraction of the Amount Absorbed for a One-
Compartment Model by the Proposed Method and by the Wagner-Nelson Method

. . Calculated F(t)
Time Theoretical
(hr) F, (0 Data This method Wagner—Nelson
1 0.100 Errorless 0.100° 0.099
Errant 0.103 + 0.010° 0.103 = 0.012
2 0.200 Errorless 0.200 0.199
Errant 0.198 = 0.017 0.197 = 0.022
4 0.400 Errorless 0.400 0.398
Errant 0.394 = 0.032 0.394 = 0.038
6 0.600 Errorless 0.600 0.596
Errant 0.595 = 0.059 0.597 = 0.068
8 0.800 Errorless 0.800 0.795
Errant 0.791 = 0.048 0.791 = 0.072
10 1.000 Errorless 1.000 0.994
Errant 1.001 = 0.083 0.993 = 0.069

¢ Equation (17) was used to calculate F, (7).

b Mean + SD; N = 10.
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Fig. 2. Fractional absorption [F,(¢)] versus time plots based on the
data in Table II. (O) Theoretical values; (l) this method (errorless
data); () this method (errant data); (A) the Wagner—Nelson
method (errorless data); (A) the Wagner-Nelson method (errant
data). The data for each method are displaced by 1 hr on the time
axis from results of the preceding technique.

time interval. For a first-order absorption process, this as-
sumption is valid only when the time intervals are short.
Figures 4 and 5 also show that the generated rate profiles
have some divergences from the theoretical values. This
variability reflects the randomly assigned errors in the data
as well as errors owing to large sampling time intervals em-
ployed for the first-order absorption process.

DISCUSSION

A method has been derived and evaluated for estimating
the apparent zero-order absorption rate constant and the
fraction of the amount absorbed with time. The derivation
technique employed in this method evolves from the convo-
lution integral. It is interesting that the equation used by the
proposed method to estimate k, [Eq. (12)] is an analogous
expression of the first equation employed in deconvolution
[Eq. (1)}. As shown in the Appendix and the preceding anal-
ysis, the proposed method and deconvolution are theoreti-
cally identical, but simulations clearly indicate that the pro-
posed method is more accurate and less sensitive to data
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variation. This is expected, since the equation [Eq. (13)}
used for estimating individual k, values is simpler and re-
quires less data manipulation.

One of the important parameters for the evaluation and
regulatory assessment of controlled-release dosage forms is
the degree of fluctuation about the mean plasma concentra-
tion (C,,) (15). It is known that the larger the fraction re-
maining to be absorbed in the gut {1 — F,(r)] during the next
dosing interval, the greater the degree of fluctuation. Con-
sequently, the fraction remained to be absorbed is a good
indicator of the day-to-day variation in the fluctuation pro-
duced by multiple dosing of a controlled-release product.
Since the fraction remaining to be absorbed can be deter-
mined from F,(?), this type of calculation was recommended
as a condition of new drug approval for controlled-release
drug products (15). When it is desirable to construct and
evaluate the F,(r) versus time plots, techniques such as the
Wagner—Nelson method and the Loo-Riegelman method are
practicable. However, they are model dependent and apply
specifically only to the one- and multiple-compartment mod-
els, respectively. The present method provides an alterna-
tive approach for estimates of F,(z). It performs as well as
the Wagner—Nelson method and is superior to the Loo—
Riegelman method under the simulation conditions. In addi-
tion, the proposed method is of value for several reasons. In
theory, it does not assume any model for the drug disposition
process; thus it is a ‘‘noncompartmental’’ approach. It does,
however, require iv data and assumes no intrasubject vari-
ability in the kinetics of drug disposition between the intra-
venous and the oral studies. Thus, like the area function
method reported previously (9), the proposed method is ex-
pected to be valid for any linear system regardless of where
a drug is distributed or eliminated in the body. In addition, it
yields estimates of k, which, under the simulation condi-
tions, are as accurate as those estimated by nonlinear regres-
sion analysis. Furthermore, the method is easy to execute
and the calculations are straightforward.

A minor complication in the use of any method of as-
sessing drug absorption is the occurrence of a lag time (¢,,,).
This is usually accommodated by the application of a time
shift at some point in the calculations. For the area function
method, Eq. (13) can be handled similarly by simply shifting
the sampling time (7) of the oral data by the #,,, value (i.e., £,
=1 = b,y

An inherent limitation of the proposed method is that

Table I1I. Calculation of the Absorption Rate Constant for a Two-Compartment Model by Five Methods for Errorless and Errant Data

Input value Calculated &, (mg/hr)
A\ Ay ko This Nonlinear Moment
(hr Y (rY (mg/hr) Data method regression method Deconvolution Loo-Riegelman
1.39 0.12 668.0 Errorless 656.8 + 1.2¢ 668.0 715.7 656.8 = 1.2° 613.2
L.7° (U] 7.1) a.7) 8.2)
1.39 0.12 668.0 Errant 660.5 = 35.9¢ 669.2 = 46.3 733.3 + 230.4 611.4 = 61.9 595.8 = 49.5
(1.1) ©.2) 9.8 8.5 (10.8)

% Mean * SD; data points from time zero to f,,, were used in Eq. (12) to calculate k.
& Mean = SD; data points from time zero to .., were used to calculate k,,.
¢ Number in parentheses is the percentage deviation from the theoretical value.

4 Mean = SD; N = 10.
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Table IV. Calculation of the Fraction of the Amount Absorbed for a Two-Compartment Model by the
Proposed Method and by the Loo-Riegelman Method

Calculated F (1)

Time (hr) Theoretical F,(¢) Data This method Loo-Riegelman

0.25 0.083 Errorless 0.082¢ 0.076
Errant 0.083 = 0.009” 0.076 = 0.005

0.50 0.167 Errorless 0.164 0.153
Errant 0.171 = 0.016 0.156 = 0.015

0.75 0.250 Errorless 10.246 0.229
Errant 0.243 + 0.032 0.226 = 0.027

1.0 0.333 Errorless 0.328 0.306
Errant 0.344 = 0.025 0.316 = 0.020

1.5 0.500 Errorless 0.492 0.459
Errant 0.478 + 0.054 0.451 = 0.038

2.0 0.667 Errorless 0.656 0.612
Errant 0.667 + 0.070 0.626 = 0.052

3.0 1.000 Errorless 0.984 0.917
Errant 0.926 + 0.104 0.882 + 0.078

< Equation (17) was used to calculate F, (1).

® Mean = SD; N = 10.

one must know or predetermine that the absorption process
is zero order and then select this procedure [versus the &,
method (9)] to use. When predetermination of the absorption
process is desirable, approaches such as construction of per-
centage unabsorbed versus time plots (2) and absorption rate
profiles are feasible. Application of percentage unabsorbed
versus time plots in the determination of the absorption pro-
cess has been addressed previously (2,16). As shown in Fig.
4, a plot of absorption rate versus time yields rectangular
pulses which fluctuate about a constant absorption rate (1/7).
This indicates apparent zero-order absorption. In contrast,
as illustrated in Fig. 5, an absorption rate profile with a de-
cay curve is a characteristic of apparent first-order absorp-
tion. In this situation, the area function method for k, [Eq.
(23)] should be employed (9).

1.2

i

FRACTIONAL ABSORPTION

o

TIME, h
Fig. 3. Fractional absorption [F,(f)] versus time plots based on the
data in Table IV. (O) Theoretical values; (M) this method (errorless
data); ((0) this method (errant data); (A) the Loo-Riegelman method
(errorless data); (A) the Loo-Riegelman method (errant data). The
data from each method are displaced by 1.0 hr from results of the
preceding technique.

If first-order absorption occurs and Eq. (13) is used to
calculate the absorption rate constant, depending on the size
of the dose, the rate constant would be either underesti-
mated or overestimated. In addition, the values calculated
would not be constant. In the same situation, if Eq. (17) is
used to estimate F,(#) values, the values would progressively
increase, reach a maximum value at ¢, then progressively
decrease to zero. Consequently, a plot of F,(f) versus time
would not be linear. In contrast, as shown previously (Figs.
2 and 3), for a zero-order absorption process, this kind of
plot would be linear.

Finally, although the simulations currently performed
clearly indicate that the proposed method is at least as ade-
quate as either nonlinear regression analysis or the Wagner-
Nelson method and is superior to the Loo-Riegelman
method, the performance of these methods under other sim-
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o L " . R :
o 2 4 6 8 10
TIME, h

Fig. 4. The profiles of the absorption rate for a drug that enters the
body by an apparent zero-order absorption process. (-+-) Theoretical
absorption rate; (—) absorption rate estimated from an errant data
set.
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unit dose/h

0.2f

ABSORPTION RATE,

TIME, h

Fig. 5. The profiles of the absorption rate for a drug that enters the
body by an apparent first-order absorption process (k, = 0.4 hr ).
(---) Theoretical absorption rate; (—) absorption rate estimated
from an errant data set.

ulation conditions reflecting variable absorption and dispo-
sition rates merits further investigation.

APPENDIX

Derivation of Eq. (4)

Since
ko
G =5 ®
taking the anti-Laplace transform of Eq. (8) yields
ko
G@) = D (A1)
or
ko
Gt) =Gt = ... =Gl =7 )
Derivation of Eq. (4) from Eqgs. (1), (2), and (3)
Substituting Eq. (12) into Eq. (Al) yields
_ G
G() = AUCS™ (A2)
when t = ¢, or t,:
Cpolt1) Cpolt2)
G(t) = = = G(¢
e AUCS™ ~ AUCS™ (®2)
(A3a, b, ¢)

Since, in general, r = (@ — )b — d), if r = alb = c/d, it
follows that

Cpo(t2) - Cpo(tl) _ Cpo(t2) - Cpo(t l)

G(tl) 0— o— - —
AUCiV 2 AUCiV n AUC::, ’2
(1 ‘4a9 b)
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or
G(t) - AUCI? = Cpolt) — Cpolt1) (AS)
Substituting Eq. (AS) into Eq. (2) yields
Gt = Cro(t2) — [Cpo(t2) = Cpolt)] _ _Cpalt1)
AUC™" AuC™
(A6a, b)
Substituting Eq. (1) into Eq. (A6b) yields
G(r) = G(ty) (AD
Similarly, we can show that
G(t;) = G(t) (A8)
G(ty) = G(t) (A9

Thus, combining Eqs. (Al), (A7), (A8), and A9 yields
Eq. (4).
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